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Abstract

Decoding for many NLP tasks requires a
heuristic algorithm for approximating exact
search since the full search space is often in-
tractable if not simply too large to traverse ef-
ficiently. The default algorithm for this job
is beam search—a pruned version of breadth-
first search—which in practice, returns better
results than exact inference due to beneficial
search bias. In this work, we show that stan-
dard beam search is a computationally ineffi-
cient choice for many decoding tasks; specif-
ically, when the scoring function is a mono-
tonic function in sequence length, other search
algorithms can be used to reduce the number
of calls to the scoring function (e.g., a neural
network), which is often the bottleneck compu-
tation. We propose best-first beam search, an
algorithm that provably returns the same set of
results as standard beam search, albeit in the
minimum number of scoring function calls to
guarantee optimality (modulo beam size). We
show that best-first beam search can be used
with length normalization and mutual infor-
mation decoding, among other rescoring func-
tions. Lastly, we propose a memory-reduced
variant of best-first beam search, which has a
similar search bias in terms of downstream per-
formance, but runs in a fraction of the time.

1 Introduction

Beam search is a common heuristic algorithm
for decoding structured predictors, e.g., neural
machine translation models and transition-based
parsers. Due to the widespread adoption of recur-
rent neural networks and other non-Markov models,
traditional dynamic programming solutions, such
as the Viterbi algorithm (Viterbi, 1967), are pro-
hibitively inefficient; this makes beam search a
common component of many state-of-the-art NLP
systems. Despite offering no formal guarantee of
finding the highest-scoring hypothesis under the

model, beam search yields impressive performance
on a variety of tasks—unexpectedly providing a
beneficial search bias over exact search for many
tasks (Stahlberg and Byrne, 2019).

Within NLP, most research on beam search has
focused on altering the standard log-probability
scoring function to return improved results, e.g.,
higher BLEU scores (Wu et al., 2016; Murray and
Chiang, 2018; Shu and Nakayama, 2018; Yang
et al., 2018) or a more diverse set of outputs (Vi-
jayakumar et al., 2016). However, little work has
been done to speed up beam search itself. Filling
this gap, this paper focuses on reformulating beam
search in order to make it faster. We propose best-
first beam search, a prioritized version of traditional
beam search which is up to an order of magnitude
faster in practice while still returning the same set
of results. We additionally discuss an even faster
heuristic version of our algorithm which further
limits the number of candidate solutions, leading
to a smaller memory footprint while still finding
good solutions.

Concretely, we offer a novel interpretation of
beam search as an agenda-based algorithm where
traditional beam search is recovered by employing
a length-based prioritization scheme. We prove
that a specific best-first prioritization scheme, as
in classic A˚ search (Hart et al., 1968), allows
for the elimination of paths that will necessarily
fall off the beam; for many scoring functions,
including standard log-probability scoring, we can
still guarantee the same k hypotheses as traditional
beam search are returned. Indeed, our algorithm
returns beam search’s top hypothesis the first time
it encounters a complete hypothesis, allowing the
program to stop early. Further, we discuss the
application of best-first beam search to several
popular scoring functions in the literature (He
et al., 2016; Li et al., 2016); this demonstrates that
we have a general framework for adapting a variety



of rescoring methods and alternate objectives to
work with our algorithm.

Empirically, we compare best-first beam search
to ordinary beam search on two NLP sequence-
to-sequence tasks: neural machine translation
(NMT) and abstractive summarization (AS). On
NMT, we find that our algorithm achieves roughly
a 30% speed-up over traditional beam search with
increased gains for larger beams (e.g., « 10x for a
beam of 500). We find similar results hold for AS.
Finally, we show that our memory-reduced version,
which limits the number of active hypotheses,
leads to additional speed-ups over best-first beam
search across beam sizes while maintaining similar
BLEU scores.

2 Sequence Transduction

A core operation in structured prediction models
is the determination of the highest-scoring output
for a given input under a learned scoring model.

y‹
def
“ argmax

yPYpxq
scorepx,yq (1)

where x is an input and Ypxq is a set of well-
formed outputs for the input. An important
example of (1) is maximum a posteriori (MAP),

yMAP def
“ argmax

yPYpxq
ppy | xq. (2)

Our work focuses on sequence-to-sequence
transduction: predicting an output sequence given
an input sequence. One such task is machine
translation, wherein a source-language sentence
is mapped (“transduced”) to a target-language
sentence. While our exposition focuses on
sequence-to-sequence prediction, our algorithms
are directly applicable to any sequential struc-
tured prediction model, such as transition-based
parsers (Nivre et al., 2008) and sequence taggers
(McCallum et al., 2000; Lafferty et al., 2001).

Notation. Let x “ xx1, . . . , xNxy be an in-
put sequence of length Nx and, likewise, let
y “ xy1, . . . , yNyy be an output sequence of
length Ny. Each yt is an element of V , the set of
output tokens. Finally, let Ypxq be the set of all
valid output sequences (i.e., complete hypotheses).
For the task of language generation, which we
focus on experimentally, this set is defined as

Ypxq def
“ tBOS ˝ v ˝ EOS | v P Vănmaxu (3)

where ˝ is string concatenation and Vănmaxpxq is
the set of all subsets of V‹ of size ă nmaxpxq. In
words, every valid sequence begins and ends with
distinguished tokens (BOS and EOS, respectively).1

Furthermore, each sequence has at most length
nmaxpxq—which is typically dependent on x—a
restriction we impose to ensure termination. Some
applications may require a stronger coupling
between Ypxq and x (e.g., |x| “ |y|). We drop the
dependence of Y and nmax on x when it is clear
from context.

Scoring. We consider a general additively de-
composable scoring model of the form

scorepx,yq “

Ny
ÿ

t“1

scorepx,yăt ˝ ytq (4)

This framework covers a variety of modeling
methodologies including probabilistic transducers
(both globally and locally normalized) and non-
probabilistic models such as maximum-margin
techniques (Taskar et al., 2004). Most importantly,
(4) covers MAP decoding (2) of neural sequence-
to-sequence models à la Sutskever et al. (2014):2

scores2spx,yăt ˝ ytq “ log ppyt | yăt,xq (5)

We note that (5) is the scoring function used for
decoding many language generation models.

Beam search. The worst-case running time of ex-
actly computing (1) is exponential in nmax; namely,
Op|V|nmaxq.3 Beam search is a commonly used
approximation to (1) in NMT and language gener-
ation tasks. It is used in many (if not most) state-
of-the-art NLP systems (Wu et al., 2016; Serban
et al., 2017; Edunov et al., 2018; Yang et al., 2019).
Beam search may be understood as a pruned ver-
sion of the classic path-search algorithm, breadth-
first search (BFS), where the breadth is narrowed
to the beam size k. Pseudocode is given in Alg. 1.

Although, beam search does not solve (1) ex-
actly, it is a surprisingly useful approximation for
NLP models. In many settings, beam search outper-
1BOS and EOS are typically members of V . Often, EOS counts
towards the nmax length limit while BOS does not. This is
reflected in (3).

2To see why, apply exp (an order-preserving transformation):
exppscores2spx,yqq “ exp

´

řNy

t“1 log ppyt | yăt,xq
¯

“
śNy

t“1 ppyt | yăt,xq “ ppy | xq
3This can be improved if, for example, scorep¨, ¨q admits a
low-order Markov factorization (Viterbi, 1967; Vieira et al.,
2016). We do not discuss that setting in this paper because it
limits the scoring model’s expressive power.



Algorithm 1 Standard beam search4

Input: x: source sentence
k: maximum beam size
nmax: maximum hypothesis length
scorep¨, ¨q: scoring function

1: B0 Ð tx0, BOSyu

2: for t P t1, . . . , nmax´1u :
3: B ÐH

4: for xs,yy P Bi´1 :
5: if y.lastpq “ EOS :
6: B.addpxs,yyq
7: continue
8: for y P V :
9: sÐ scorepx,y ˝ yq

10: B.addpxs,y ˝ yyq

11: Bi Ð B.toppkq

12: return B.maxpq

forms exact methods in terms of downstream eval-
uation (Koehn and Knowles, 2017; Stahlberg and
Byrne, 2019). For the remainder of this paper, we
will pivot our attention away from exact solutions
to (1) to exact solutions to the beam search output.

Definition 2.1. k-optimal hypothesis. We say that
a hypothesis is k-optimal if it is the top hypothesis
returned by beam search with beam size k.

3 A˚ Beam Search

We develop a meta-algorithm that is parameterized
by several choice points. Our general search algo-
rithm for decoding (Alg. 2) takes an arbitrary pri-
oritization function, stopping criterion, and search
heuristic. With certain values of these attributes, we
recover many common search algorithms: greedy
search, beam search, best-first search (Dijkstra,
1959), and A˚ search (Hart et al., 1968). We pro-
pose an alternate prioritization function for beam
search that allows for faster decoding while still
returning the same k-optimal set of hypotheses.

4Often, the score function is additively decomposable in t,
such as (5). Implementations can exploit this fact to make
each score evaluation (line 9) Op1q rather than Optq. We
did not make this implementation detail explicit in Alg. 1 or
Alg. 2 for generality and simplicity.

5If the last token of y1 is the end symbol (e.g., EOS), then y1

is not expanded any further. One can either regard y1 as any
other hypothesis albeit with y1 ˝ yt “ y1 or keep appending
EOS (i.e y1 ˝ yt “ y1 ˝ EOS ) so that time step and length can
be regarded as synonymous. We adopt the latter standard for
comparability with subsequent algorithms.

Algorithm 2 A˚ beam search.4,5 Highlighted sec-
tions are choice points in the algorithm for which
values determine the search strategy. See § 3.1 for
detailed explanation.
Input: x: source sentence

nmax: maximum hypothesis length
scorep¨, ¨q: scoring function
5: comparator 1

stopp¨, ¨q: stopping criterion 2

k: maximum beam size 3

hp¨, ¨q: heuristic function 4

1: QÐpriority queuep5q
2: Q.pushpx0, BOSyq

3: POPS Ð counterpq

4: while not stoppQq and not Q.emptypq :
5: xsh,yy Ð Q.poppq
6: if POPSr|y|s ě k or |y| ą nmax :
7: continue
8: POPSr|y|s Ð POPSr|y|s ` 1

9: if y.lastpq “ EOS :
10: Q.pushpxsh,y ˝ EOSyq

11: else:
12: for y P V :
13: sÐ scorepx,y ˝ yq

14: sh Ð s` hpx,y ˝ yq

15: Q.pushpxsh,y ˝ yyq
16: return Q.poppq if not Q.emptypq else null

3.1 Choice Points of the Meta Algorithm
Here we review the components of our meta algo-
rithm (the highlighted sections in Alg. 2) that can
be varied to recover different search strategies:

1 A priority queue Q maintains the set of active
hypotheses. Elements in this set are ordered
according to a generic comparator 5. When
its peekpq (or poppq) methods are called, the
first element ordered by 5 is returned (or re-
turned and removed).

2 The algorithm terminates according to config-
urable stopping criterion based on elements in
Q.

3 Only k paths of a given length are considered.
If the algorithm has already encountered k
paths of a given length, subsequent paths of
that length are not evaluated. If we take k “
8, we recover unpruned search algorithms.

4 A heuristic function hpx,yq can be used



during search to change the priority in which
paths are evaluated. We note that with
pruning, a heuristic may change the value of
the k-optimal hypothesis (see § 4.1).

Recovering Beam Search. To recover beam
search from Alg. 2, we use the choice points from
Tab. 1. Explicitly, the comparator prioritizes hy-
potheses from earlier time steps first, but breaks
ties with the hypotheses’ scores under the model.
We note that while the standard algorithm for beam
search does not prioritize by score within a time
step, variations of the algorithm use this strategy so
they can employ early-stopping strategies (Klein
et al., 2017; Huang et al., 2017). Beam search ter-
minates once either all hypotheses end in EOS or
the queue is empty (i.e., when the k beams have
been extended nmax time steps but none end in EOS).
In the second case, no complete hypothesis is found.
Finally, choosing the heuristic hpx,yq “ 0 makes
the algorithm a case of standard best-first search.

Note that, while standard beam search returns a
set, Alg. 2 only returns the k-optimal hypothesis.
This behavior is sufficient for the majority of use
cases for beam search. However, if the full set of k
hypotheses is desired, the stopping criterion can be
changed to evaluate true only when k hypotheses
are complete. Under the other beam search settings,
this would guaranteeably return the same set as
beam search (see § 4.1).

Recovering A˚. To recover the traditional A˚

search algorithm we use the comparator that priori-
tizes hypotheses with a higher score first; ties are
broken by hypothesis length. The algorithm termi-
nates when the first item of Q contains an EOS. If
we take k “ 8, best-first beam search recovers A˚.
Any admissible heuristic may be used for hpx,yq.

Definition 3.1. Admissible Heuristic. A heuristic
h is admissible if it never overestimates the future
cost—or underestimates the future reward—of con-
tinuing down a path.

3.2 Best-First Beam Search
In its original form, A˚ search may traverse the
entire Op|V|nmaxq graph, which as discussed ear-
lier, is intractable for many decoding problems.
While standard beam search addresses this problem
by limiting the search space, it still has computa-
tional inefficiencies—namely, we must analyze k
hypotheses of a given length (i.e., time step), re-
gardless of how poor their scores may already be,

before considering longer hypotheses. However,
prioritization by length is not strictly necessary for
finding a k-optimal hypothesis. As is done in A˚,
we can use score as the prioritization scheme and
still guarantee optimality–or k-optimality–of the
paths returned by the algorithm.

We define A˚ beam search as the A˚ algorithm
where breadth is limited to size k. Further, we de-
fine best-first beam search as the case of A˚ beam
search when no heuristic is used (see Tab. 1 for
algorithm settings). This formulation has two large
advantages over standard beam search: (1) we gain
the ability to remove paths from the queue that
are guaranteed to fall off the beam and (2) we can
terminate the algorithm the first time a complete
hypothesis is encountered. We can therefore reduce
the computation required for decoding while still
returning the same set of results.

To see why the above is true, note that the
standard log-probability scoring function used by
many sequential structured prediction models is
monotonically decreasing in t.

Definition 3.2. Monotonicity. A scoring function
scorep¨, ¨q is monotonic in t if for all x, yăt “
xy1 . . . yt´1y, yt P V, 1 ď t ď nmax

scorepx,yătq ě scorepx,yăt ˝ ytq

Clearly, (5) is a monotonic scoring function in t
because scores2s ď 0, i.e., score can only decrease
in t. This implies we can order our search accord-
ing to scorepx,yătq without fear of overlooking
a hypothesis whose score would increase over
time. Furthermore, once k hypotheses of a given
length t have been evaluated, we no longer need to
consider any hypothesis where |y| ă t since such
hypotheses would necessarily fall off the beam.
We can therefore remove such hypotheses from the
queue and avoid wasting computational power on
their evaluation. We prove this formally in § 4.1.

Another implication of the monotonicity prop-
erty of score is that we may terminate best-first
beam search once a hypothesis containing EOS is
encountered (i.e., the end state is found). If the full
set of k complete hypotheses is desired, then we
simply continue until k hypotheses have reached
EOS. We prove the k-optimality of these hypothe-
ses under best-first beam search in § 4.1.

3.3 Implementation Details

Standard beam search forms a separate set of active
hypotheses for each time step, i.e., each Bt is its



Beam Search Best-First Beam Search A˚ Beam Search

1
or p|y| “ |y|1 and sh ě s1hq

xsh,yy5 xs1h,y
1y ðñ |y| ă |y|1

or psh “ s1h and |y| ă |y|1q
xsh,yy5 xs1h,y

1y ðñ sh ą s1h
or psh “ s1h and |y| ă |y|1q

xsh,yy5 xs1h,y
1y ðñ sh ą s1h

2
y.lastpq “ EOS @y P Q

stoppQq ðñ
Q.peekpq.lastpq “ EOS

stoppQq ðñ
Q.peekpq.lastpq “ EOS

stoppQq ðñ

3 k “ beam size k “ beam size k “ beam size
4 0 0 any admissible heuristic

Breadth-First Search Best-First Search A˚ Search

1
or p|y| “ |y|1 and sh ě s1hq

xsh,yy5 xs1h,y
1y ðñ |y| ă |y|1

or psh “ s1h and |y| ă |y|1q
xsh,yy5 xs1h,y

1y ðñ sh ą s1h
or psh “ s1h and |y| ă |y|1q

xsh,yy5 xs1h,y
1y ðñ sh ą s1h

2
y.lastpq “ EOS @y P Q

stoppQq ðñ
Q.peekpq.lastpq “ EOS

stoppQq ðñ
Q.peekpq.lastpq “ EOS

stoppQq ðñ

3 k “ 8 k “ 8 k “ 8
4 0 0 any admissible heuristic

Table 1: Values at choice points for various search algorithms. Note that any admissible heuristic may be used for
variants of A˚ search.

own set. Once Bt has been narrowed down to the
top k, the previous Băt can be forgotten. However
in best-first beam search, since hypotheses are not
evaluated in order of time step, we may need to
keep Bt from several time steps at any given point.

A naive implementation of best-first beam search
is to keep a single priority queue with all the ac-
tive hypotheses ordered by current score. How-
ever, each push to the queue would then require
Oplogpnmaxk|V|qq time. We can reduce this run-
time by instead keeping a priority queue of beams,
where the priority queue is ordered by the highest-
scoring hypothesis from each beam. Further, each
beam can be represented by a min-max queue
(Atkinson et al., 1986); this allows us to limit the
size of Bt to k: we can check in Op1q time if a
hypothesis is in the top-k before adding it to Bt.

A potential inefficiency, which we avoid, comes
from updating Bt`1, which we must do when eval-
uating a hypothesis from Bt. Since all beams are
stored in a queue, there is no guarantee of the lo-
cation in the queue of Bt`1. To avoid Opnmaxq

lookup, we can keep a pointer to each beam, in-
dexed by t making the lookup Op1q. However, we
acquire a Oplog nmaxq term to update the queue of
beams as Bt`1 may change priority.

Memory-Reduced best-first beam search. A
major drawback of the A˚ algorithm is its memory
usage, which in the worst-case is Opbdq for breadth
width b and maximum depth d. In the A˚ formu-
lation of beam search, where the breadth width is
limited to the beam size, this amounts to worst-case
Opk ¨ nmaxq memory usage, where standard beam
search has Opkqmemory usage. While in many set-

tings the multiplicative factor may be insignificant,
for neural sequence models it can be prohibitive;
this is due to the large amount of memory required
to store each hypothesis (e.g., prior hidden states
needed to compute subsequent scores for scoring
functions parameterized by neural networks).

We propose a variant of best-first beam search
that limits memory usage, i.e., the queue capacity.
Specifically, if we reach the chosen queue capacity,
we remove the worst scoring active hypothesis from
the earliest active time step. This can easily be done
in Op1q time given our pointer to each beam.

4 Algorithm Analysis

4.1 Correctness

We show the equivalence of the top hypothesis6

returned by beam search and best-first beam search
when scorep¨, ¨q is monotonically decreasing in t,
length-based prioritization is used and the beam
size k is the same for both algorithms. Without
loss of generality, we hold x constant in all the
following proofs.

Note that we take the terms pop and push
from queue terminology. Specifically, “popping a
hypothesis” refers to making it past line 7 of Alg. 2,
where a hypothesis y is expanded by yt P V . In
path search terminology, this would be equivalent
to visiting a node and adding the edges from that
node as potential paths to explore. Lastly, we refer

6best-first beam search is guaranteed to return the same set of
k hypotheses as beam search. We include the proof for only
the top hypothesis for simplicity. The proof for set equality
follows naturally.



to the priority queue used by beam search and best-
first beam search as QBS and QA˚ , respectively.

Lemma 4.1. best-first beam search evaluates all
hypotheses of a given length t in order of their
score.

Proof. We prove the lemma by induction. The
lemma holds trivially for the base case of hypothe-
ses of length 0 because the only hypothesis of
length 0 is xBOSy.

Now, by the inductive hypothesis, suppose
Lemma 4.1 holds for all hypotheses of length
ă t. We will show it must also hold for hy-
potheses of length t. Consider two competing
hypotheses: y “ yăt ˝ yt and y1 “ y1ăt ˝ y

1
t.

Note that |yăt| “ |y1ăt| “ t ´ 1. Suppose
scorepx,y1q ă scorepx,yq.

Case 1: scorepx,y1ătq ă scorepx,yătq. Then
by induction, yăt popped first and y is pushed to
Q before y1. Since scorepx,y1q ă scorepx,yq, y
will be popped before y1.

Case 2: scorepx,yătq ă scorepx,y1ătq. Then
by induction, y1ăt is popped first and y1 is added
to Q before y. But, since scorepx,y1q ă

scorepx,yq ď scorepx,yătq by monotonicity,
then yăt will be popped before y1. Consequently,
y will be pushed to Q before y1 is evaluated. By
the rules of the priority queue y will be evaluated
before y1.

Case 3: scorepx,y1q “ scorepx,y). The lemma
holds if either y or y1 is popped first.

By the principle of induction, Lemma 4.1 holds
for all t P Z`.

Lemma 4.2. The first hypothesis that best-first
beam search pops that ends in EOS is the best hy-
pothesis found by best-first beam search.

Proof. Let y be the first hypothesis popped by best-
first beam search ending in EOS. By rules of the
priority queue, no other active hypothesis has a
higher score than y. Additionally, by monotonicity
of the scoring function, no other hypothesis can
subsequently have score greater than y. Therefore
y must be the best hypothesis found by best-first
beam search.

Lemma 4.3. If best-first beam search pops a hy-
pothesis, then beam search necessarily pops that
same hypothesis.

Proof. We prove the lemma by induction on hy-
pothesis length. The base case holds trivially: For
hypotheses of length 0, both best-first beam search

and beam search must pop the xBOSy as it is the
only item in the queue after initialization.

By the inductive hypothesis, suppose Lemma 4.3
holds for hypotheses of length ă t. Suppose best-
first beam search pops a hypothesis y “ yăt ˝ yt
of length t.

Case 1: best-first beam search pops k hypotheses
of length t´1 before popping y, which is of length
t. The sets of hypotheses of length t´ 1 that each
algorithm pops are necessarily the same by the
inductive hypothesis and the fact that they have the
same cardinality. If best-first beam search pops y,
which is of length t, then it must be in the top-k
highest-scoring hypotheses of length t in QA˚ by
the rules of the priority queue. Consequently, it
must be in the top-k in QBS.

Case 2: best-first beam search has popped fewer
than k hypotheses of length t´ 1 before popping
y. Then, all remaining hypotheses of length t´ 1
in QA˚ must have scorepx,y1ătq ă scorepx,yq by
the rules of the priority queue. By the monotonicity
of the score function, all extensions of those y1ăt
will also have scorepx,y1ăt ˝ y

1
tq ă scorepx,yq.

Because none of y1ăt ˝ y
1
t has greater score than y,

y must be in Bt.

Corollary 4.3.1. best-first beam search will never
pop more hypotheses than beam search.

Theorem 4.4. Once best-first beam search has
popped k hypotheses of length t, hypotheses from
time steps ă t do not need to be popped.

Proof. This follows from Lemma 4.1. If k hypothe-
ses of length t have been popped, then these must
be the top-k hypotheses from time step t. There-
fore no hypothesis from time step ă t that is still
in QA˚ would be in the top-k at time step t.

Theorem 4.5. Upon stopping, beam search and
best-first beam search return the same hypothesis.

Proof. Let ỹA˚ be the hypothesis best-first beam
search returns. By Lemma 4.3 beam search also
pops ỹA˚ . Because ỹA˚ ends in EOS, we have that
ỹA˚ ˝ EOS will also have the same score; it follows
by Lemma 4.1 that ỹA˚ ˝EOS is the highest-scoring
hypothesis of length |ỹA˚ | ` 1 and, by monotonic-
ity, of all subsequent lengths. Thus, when beam
search reaches nmax, ỹA˚ remains in QBS. There-
fore, when beam search terminates, ỹA˚ will be
the highest-scoring hypothesis that ends in EOS and
thus the solution returned by beam search.



Non-monotonic Scoring Functions. Non-
monotonic scoring functions (definition 3.2)
break the assumptions of § 4.1, in which case
best-first beam search is not guaranteed to return a
k-optimal hypothesis. However, when the scoring
function is boundable from above, we can alter the
original stopping criterion ( 2 in Alg. 2) such that
k-optimality is again guaranteed.

Given our assumed restriction on the search
space—namely, |y‹ P Ypxq| ď nmaxpxq—we can
upper-bound the maximal score of any hypothesis
under the scoring function in use. Formally, for any
function score we have:

stoppQq ðñ
scorepx, ŷq ě scorepx,y1q ` Upx,y1q

@y1 P Q (6)

where ŷ is the best complete hypothesis found so
far and Upx,y1q is the score function-dependent
upper bound on how much the score of y1 can in-
crease as y1 is expanded further.7 In this situation,
best-first beam search only terminates once no
other hypothesis in Q can have a score greater than
the best finished hypothesis. We note that Huang
et al. (2017) use a similar scheme for optimal
stopping with bounded length normalization.
We discuss examples of non-monotonic scoring
functions in § 5.

A Note on Heuristics. Our analysis shows the
equivalence of beam search and best-first beam
search, i.e., when hpx,yq “ 0. The analysis does
not hold for arbitrary admissible heuristics. A poor
heuristic, e.g., one that grossly overestimates the
future score of continuing down one path, may
cause other items to be pruned from best-first beam
search that otherwise would have remained on the
beam in standard beam search.

4.2 Runtime

Theorem 4.6. The runtime of best-first beam
search is Opnmaxk p|V| logpkq ` logpnmaxqqq

Proof. We pop at most nmax ¨ k items. Each pop
requires us to push |V| items. Each push re-
quires logpkq time when the priority queue is im-
plemented with a min–max heap (Atkinson et al.,
1986) and incrementally pruned so that it has
no more than k items. After pushing those |V|
items, we have to perform a percolation in the

7For monotonic scoring functions, we have Upx,y1q “ 0.

priority queue of priority queues which requiers
logpnmaxq time. This yields Opnmaxk p|V| logpkq`
logpnmaxqqq time.

Theorem 4.7. The runtime of standard beam
search is Opnmax k |V| logpkqq.

Proof. The proof is the same as Theorem 4.6, but
we can forgo the percolation step in the queue
of queues because standard beam search pro-
ceeds in order of hypothesis length. This yields
Opnmaxk|V| logpkqq.

While the theoretical bound of best-first beam
search has an additional log factor compared to
standard beam search, we find this to be negligi-
ble in practice. Rather, we find number of calls to
score, the scoring function under our model (e.g.,
a neural network), is often the bottleneck operation
when decoding neural networks (see § 6 for empir-
ical evidence). In terms of this metric, the beam
search algorithm makes Opknmaxq calls to score,
as score is called once for each active hypothesis in
B and B may evolve for nmax rounds. The worst-
case number of calls to score will be the same as
for beam search, which follows from Lemma 4.3.

5 Scoring Functions

Even before the findings of Stahlberg and Byrne
(2019), it was well known that the best scoring hy-
pothesis with respect to the traditional likelihood
objective can be far from ideal in practice (Wu
et al., 2016; Murray and Chiang, 2018; Yang et al.,
2018). For language generation tasks specifically,
the results returned by neural models using the stan-
dard scoring function are often short and default to
high frequency words (Vinyals and Le, 2015; Shen
et al., 2016).

To alleviate such problems, methods that revise
hypothesis scores to incorporate preferences for
longer, less repetitive, or more diverse options have
been introduced and are often used in practice.
While most such techniques change the scoring
function such that it is no longer monotonic, we
can still guarantee the k-optimality of the returned
hypothesis for (upper) bounded scoring functions
using the methods discussed in § 4.1. In the re-
mainder of this section, we present alternate scor-
ing schemes adapted to work with best-first beam
search. Additionally, we present several heuristics
which, while breaking the k-optimality guarantee,
provide another set of decoding strategies worth
exploring.



Length Normalization. Length normalization is
a widely-used hypothesis scoring method that aims
to counteract the propensity for shorter sequences
to have higher scores under neural models; this is
done by normalizing scores by hypothesis length
(see Murray and Chiang (2018) for more detail).

For early stopping in beam search with length
normalization, Huang et al. (2017) propose bound-
ing the additive length reward as the minimum of
a pre-determined optimal sequence length ratio r
and the final sequence length Ny:

scoreLNpx,yq “ scorepx,yq

` β ¨mintr|x|, Nyu
(7)

where β is the scaling parameter for the reward.
We note, however, that the same can be done with
the maximum sequence length nmax such that the
traditional length reward used by He et al. (2016)
is recovered:

scoreLNpx,yq “ scorepx,yq ` βmintnmax, Nyu

“ scorepx,yq ` βNy (8)

We formally propose two methods for length
normalization. We use the scoring functions in (7)
or (8) with either: (1) the following heuristic:

hpx,yq “

#

0 for y.lastpq “ EOS

βmaxtb´ |y|, 0u for y.lastpq ‰ EOS
(9)

where b can be r|x| or nmax;8 or (2) stopping crite-
rion as in (6) albeit with scoreLN and upper-bound
function:

Upx,yq “ βmaxt0, b´ |y|u (10)

Despite their similarities, these two methods are
not guaranteed to return the same results. While
the second method will return the same k-optimal
hypotheses as beam search, using a heuristic dur-
ing pruned search means we can no longer guaran-
tee the k-optimality of the results with respect to
the scoring function as the heuristic may push hy-
potheses off of the beam. We present experimental
results for both methods in § 6.

Mutual Information. Maximum mutual infor-
mation decoding (Li et al., 2016) aims to alleviate
the inherent preference of neural models for high-
frequency tokens when using the log-probability de-
coding objective. Rather than choosing the hypoth-
esis y to maximize conditional probability with

8We enforce r|x| ă nmax.

respect to the input x, we instead choose y to max-
imize pointwise mutual information (PMI):

PMIpx;yq “ log
ppx,yq

ppxqppyq
(11)

Note that (11) is equivalent to log ppy|xq
ppyq , which can

be rewritten as log ppy | xq ´ log ppyq making the
objective additive and thus (11) can conform to (4).

From this last form, we can see how mutual in-
formation decoding penalizes high-frequency and
generic outputs; the negative ppyq term, as Li
et al. (2016) point out, acts as an “anti-language
model.” One unfortunate side effect of this objec-
tive is that ungrammatical and nonsensical outputs,
which have probabilities close to 0 under a lan-
guage model like ppyq, end up with high scores
due to the second term in the score function. To ad-
dress this problem, and to upper-bound the scoring
function, we propose lower-bounding the language
model term by a hyperparameter 1 ě ε ą 0. We
additionally use the strength hyperparameter λ em-
ployed by Li et al. (2016):

scorePMIpx,yq “ log ppy | xq

´ λ logmaxtppyq, εu (12)

Similarly to our methods for length normaliza-
tion, we can use the scoring function in (12) either
with the heuristic:

hpx,yq “

#

0 for y.lastpq “ EOS

´λ log εpnmax´|y|q for y.lastpq ‰ EOS

(13)

or with stopping criterion as in (6) albeit with
scorePMI and upper-bound function:

Upx,yq “ ´λ log εpnmax ´ |y|q (14)

Since ´λ log ε is the best possible score at any
given time step, clearly we can bound the increase
in scorePMI by the above function. However, as
with our length normalization strategy, we lose the
k-optimality guarantee with the heuristic method
for mutual information decoding. We present ex-
perimental results for both methods in § 6.

6 Experiments

We run our algorithm on several language-related
tasks that typically use beam search for decod-
ing: neural machine translation (NMT) and ab-
stractive summarization (AS). Specifically, experi-
ments are performed on IWSLT’14 De-En (Cettolo
et al., 2012), WMT’17 De-En (Bojar et al., 2017),



IWSLT’14 De-En MTTT Fr-En CNN-DailyMail
k“5 k“10 k“100 k“500 k“10 k“100 k“500 k“5 k“10 k“100
(35.6) (35.4) (34.7) (7.9) (33.0) (9.9) (1.2) (31.5) (30.9) (29.1)

BF beam search 93 (24%) 169 (36%) 1275 (79%) 1168 (736%) 184 (16%) 867 (138%) 885 (836%) 200 (33%) 305 (43%) 2960 (92%)

Beam search (ES) 107 (7%) 210 (9%) 2047 (12%) 7685 (27%) 196 (9%) 1310 (58%) 4182 (98%) 224 (19%) 357 (22%) 3942 (59%)

Beam search 115 229 2286 9770 214 2066 8281 266 435 5673

Table 2: Average number of calls (rounded to nearest whole digit) to score, the sequence transduction model, per
generated sequence when using different decoding algorithms. Green percentages are performance improvements
over standard beam search. Beam search (ES) refers to the OpenNMT early-stopping method (Klein et al., 2017).
All methods provably return the same solution and thus, evaluation metrics (in dark blue) for a given beam size are
identical.

Figure 1: Number of calls to scoring function score
vs. total sequence generation time. Each point is a de-
coded sequence. Colors represent different model ar-
chitectures and shapes signify the decoding algorithm
used (beam sizes 3 and 10 are included for each). There
is no notable difference in the overhead (time-wise) of
best-first beam search and beam search.

MTTT Fr-En (Duh, 2018), and CNN-DailyMail
(Hermann et al., 2015) using both Transformers
(Vaswani et al., 2017) and Convolutional sequence-
to-sequence models (Gehring et al., 2017).

For reproducibility, we use the data pre-
processing scripts provided by fairseq (Ott et al.,
2019) and follow their methods for training se-
quence transduction models. Hyperparameter are
set in accordance with previous works. Specifically,
on IWSLT’14 and MTTT tasks, we follow the rec-
ommended Transformer settings for IWSLT’14 in
fairseq,9 which are based on Vaswani et al. (2017)
and Gehring et al. (2017). Hyperparameters for
models trained on the WMT task are set following
version 3 of the Tensor2Tensor toolkit (Vaswani
et al., 2018). We use byte-pair encoding (BPE;
Sennrich et al. 2016) for all languages. Vocabulary
sizes for WMT and IWSLT’14 are set from rec-
9https://github.com/pytorch/fairseq/tree/
master/examples/translation

ommendations for the respective tasks in fairseq;
for the MTTT tasks, vocabulary sizes are tuned
on models with standard label smoothing regular-
ization. Similarly, the CNN/DailyMail dataset is
pre-processed and uses BPE following the same
steps as (Lewis et al., 2019). Hyperparameters
are the same as for their model fine-tuned on
CNN/DailyMail. Details are available on the
fairseq website.10

We use BLEU (Papineni et al., 2002) (evaluated
using SacreBLEU (Post, 2018)) for MT metrics
and ROUGE-L (Lin, 2004) for abstractive summa-
rization metrics. We build our decoding framework
in SGNMT.11

6.1 Running Time

In Tab. 2, we report values as the average number
of calls to the scoring function per input; we
do not use wall-clock time as this is heavily
dependent on hardware. See Fig. 1 for empirical
justification of the correlation between calls to the
scoring function and runtime on the hardware our
experiments were run on. For reference, in our
experiments, the scoring function took on average
ą 99% of the total computation time, even with
larger beam sizes, when overhead of the search
algorithm is most significant.

We find that best-first (BF) beam search leads
to significant speed-ups over both traditional beam
search and beam search with early stopping, with a
performance increase12 of « 8x for a beam size of
500. We likewise find that best-first beam search
offers speed-ups over early stopping methods that
are not guaranteed to return the same results as
standard beam search (see Tab. 3).

10https://github.com/pytorch/fairseq/
blob/master/examples/bart/README.cnn.md

11https://github.com/ucam-smt/sgnmt
12Performance increase is defined as pold´ newq{new

https://github.com/pytorch/fairseq/tree/master/examples/translation
https://github.com/pytorch/fairseq/tree/master/examples/translation
https://github.com/pytorch/fairseq/blob/master/examples/bart/README.cnn.md
https://github.com/pytorch/fairseq/blob/master/examples/bart/README.cnn.md
https://github.com/ucam-smt/sgnmt


IWSLT’14 De-En

k method search
error BLEU # calls

10
shrinking 0% 35.4 229 (0%)
early 0% 35.4 225 (2%)
BF BS - 35.4 169 (36%)

100
shrinking 31.7% 13.2 2278 (0%)
early 31.7% 13.2 1738 (31%)
BF BS - 34.7 1275 (79%)

WMT’17 De-En

10
shrinking 0% 28.6 260 (0%)
early 0% 28.6 252 (3%)
BF BS - 28.6 230 (12%)

100
shrinking 1.7% 26.4 2587 (0%)
early 1.7% 26.4 2402 (8%)
BF BS - 26.9 2046 (26%)

Table 3: BLEU, search error, and average number of
calls to score for different stopping criterion. “shrink-
ing” refers to the shrinking beam method of Bahdanau
et al. (2015) and “early” refers to the stopping criterion
of Huang et al. (2017). Note that neither method is
guaranteed to return the same result as standard beam
search. Search error and performance increases are
with respect to standard beam search.

6.2 Length Normalization

We experiment with both forms of length normal-
ization presented in § 5 and provide results in
Tab. 4. We find that both methods, i.e., changing
the stopping criterion and using a heuristic during
search, provide improvements over baseline
BLEU scores albeit with different hyperparameter
settings; increases are similar to improvements
reported by Murray and Chiang (2018). Notably,
using a heuristic causes a large percentage of search
errors with respect to standard beam search using
the same scoring function. However, the difference
in results appears to be beneficial in terms of BLEU.

6.3 Mutual Information

We train a language model on the IWSLT dataset
and use it to calculate ppyq from (12) as marginal-
izing over y is intractable (see Li et al. (2016) for
further justification). We run experiments using
both of the methods discussed in § 5 and present re-
sults in Tab. 5. We find that both methods provide
results of equivalent BLEU score compared with
the baseline output, i.e., results obtained with the
unbounded PMI objective and beam search. Again,
despite the high search error rate demonstrated by
the heuristic method, evaluation metrics are still
comparable.

IWSLT’14 De-En

k β b # calls search
error BLEU

Heuristic 5 0.8 |x| 115 (0%) 40.6% 33.9+0.3
10 1.2 |x| 229 (0%) 54.7% 33.8+0.5

Stopping
Criterion

5 0.5 nmax 73 (58%) - 33.7+0.1
10 0.5 nmax 130 (76%) - 33.7+0.4

MTTT Fr-En

Heuristic 5 0.8 .7|x| 100 (8%) 16.2% 33.5+0.2
10 1.0 .7|x| 196 (9%) 25.2% 33.6+0.6

Stopping
Criterion

5 1.0 nmax 65 (66%) - 34.1+0.8
10 1.2 nmax 88 (143%) - 34.1+1.1

Table 4: BLEU search error, and average number of
calls to score for output obtained with length normal-
ization scoring function on the IWSLT’14 De-En and
MTTT Fr-En test sets. Increase in BLEU is over base-
line with no length normalization. Search error and per-
formance increases are with respect to standard beam
search decoding using the same scoring function.

6.4 Memory Usage

We conduct a set of experiments where we limit
total queue capacity to k ¨ γ for γ P t1, . . . , nmaxu,
as described in § 3.3, and report the BLEU score of
the resulting set of hypotheses.

As shown in Tab. 6, we find that restricting the
queue capacity does not harm output quality and
additionally, leads to even greater runtime perfor-
mance increase. For example, runtime for decod-
ing of IWSLT’14 with a beam size of 10 can be
improved by ą 3x while returning results with
better evaluation metrics. We find that improve-
ments are even more pronounced for larger beam
sizes. Across beam widths and tasks, we find that
search error (with respect to standard beam search)
is quite low for γ “ 5. Additionally, for smaller γ,
the change in BLEU score demonstrates that search
error in this context does not necessarily hurt the
quality of results.

7 Related Work

Our work is most similar to that of Zhou and
Hansen (2005), who propose beam stack search.
However, they are focused on exact inference and
still evaluate hypotheses in breadth-first order. Ad-
ditionally, their algorithm requires Opnmaxkq mem-
ory; while best-first beam search has the same re-
quirements, we introduce effective methods for re-
ducing them, namely memory-reduced best-first
beam search.

Huang et al. (2017) propose and prove the op-
timality of an early-stopping criterion for beam



k ε β # calls search
error BLEU

Baseline 5 - .05 115 - 33.2
10 - .05 229 - 33.0

Heuristic 5 .02 .05 129 (0%) 42.7% 33.2
10 .02 .05 256 (0%) 42.7% 33.0

Stopping
Criterion

5 3e-4 .05 114 (1%) 29.2% 33.2
10 5e-5 .05 224 (2%) 26.6% 33.0

Table 5: BLEU scores with mutual information scoring
function on IWSLT’14 De-En. Baseline is PMI decod-
ing with unbounded ppyq, i.e., ε “ 0. Search error is
with respect to beam search decoding of baseline with
same β.

IWSLT’14 De-En

k γ
search
error BLEU # calls

5
2 22.7% 35.7+0.1 43.8 (163%)
5 4.4 % 35.8+0.2 79.8 (44%)
nmax - 35.6 93.0 (24%)

10
2 22.6% 35.7+0.3 48.4 (374%)
5 4.5% 35.6+0.2 126.9 (81%)
nmax - 35.4 169.0 (36%)

WMT’17 De-En

5
2 29.0% 29.7+0.2 77.5 (75%)
5 1.2% 29.5+0.0 115.8 (12%)
nmax - 29.5 118.8 (10%)

10
2 36.6% 29.5+0.2 97.3 (165%)
5 2.6% 29.3+0.0 230.0 (12%)
nmax - 29.3 230.2 (12%)

Table 6: BLEU scores and the number of calls to score
on the IWSLT’14 De-En validation set and WMT’17
De-En test set with queue size restricted to nmax ¨ k.
Note that γ “ nmax is the standard best-first beam
search algorithm. Performance increases are over stan-
dard beam search. Search error is with respect to beam
search with same beam width.

search. The authors find in practice though that
reduction in computation from their algorithm was
generally not significant. We build on this work
and introduce additional methods for avoiding un-
necessary computation. Our method leads to better
performance, as shown in Tab. 2.

Klein and Manning (2003) use A˚ for PCFG
parsing; however, they use the un-pruned version
for exact search which is not applicable for NMT
or AS as the memory requirements of the algo-
rithm are far too large for these tasks. Subsequently,
Pauls and Klein (2009) provide a method for prun-
ing this search algorithm, albeit using a thresh-
old rather than explicitly limiting the state space.
Huang et al. (2012) also adapt A˚ for a k-best

decoding algorithm. While their methods differ
notably from ours, they likewise employ pruning
techniques that allow for substantial speedups.

Stahlberg and Byrne (2019) create an exact infer-
ence algorithm for decoding and use it to analyze
the output of neural NMT models. While they
likewise employ the monotonicity of the scoring
function to make their method tractable, they do not
focus on speed or mimicking the results of standard
beam search.

8 Conclusion

We propose best-first beam search, an algorithm
that allows for faster decoding while still guaran-
teeing k-optimality. We provide results on several
sequence-to-sequence transduction tasks that show
the speed-ups our algorithm provides over standard
beam search for decoding neural models. We adapt
several popular alternate scoring functions to best-
first beam search and provide a framework that
can be used to adapt other scoring methods such
as coverage normalization (Wu et al., 2016) or di-
verse beam search (Vijayakumar et al., 2016). We
also provide a memory-reduced version of our al-
gorithm, which returns competitive results in a frac-
tion of the time needed for standard beam search.
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